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J. Phys. A: Math. Gen. 14 (1981) 2817-2827. Printed in Great Britain 

Dynamics of Bloch electrons in external electric fields: I. 
Bounds for interband transitions and effective Wannier 
Hamiltonians 

A Nenciut and G Nenciut 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, SU-141980 
Dubna, USSR 

Received 11 February 1981 

Abstract. Upper bounds on the interband transitions for Bloch electrons in homogeneous 
electric fields are obtained. The bounds are powerful enough to imply the existence of 
‘oscillating Bloch electrons’ in weak electric fields. The existence of the effective Wannier 
Hamiltonians of arbitrary order is also proved. 

1. Introduction 

This is the first in a series of papers dealing with the dynamics of Bloch electrons in 
external electric fields. Since the first paper by Bloch (1928), a large body of literature 
has been accumulated about this subject. In spite of this, mainly due to some subtle 
mathematical phenomena which appear, few rigorous results are known and matters 
like the existence of oscillating Bloch electrons, effective Wannier Hamiltonians, 
Stark-Wannier ladder, etc are still controversial. The aim of this series of papers is to 
obtain rigorous results about the dynamics of Bloch electrons in evternal electric fields 
and to settle some of the existing debates. 

The main aim of the present paper is to prove a result announced already (Nenciu 
and Nenciu 1980). In the second section, the problem is described and the main results 
are stated. The third section contains the first-order theory. The recent result due to 
Bentosella (1979) is shown to be a particular case of our first-order theory. The fourth 
section contains the general theory and the proof of the main results. In the last section, 
we shall indicate some straightforward generalisations. As already announced (Nenciu 
and Nenciu 1980), the proof follows essentially the proof of the adiabatic theorem 
(Nenciu 1980) with some simplifications, due to the time independence of the starting 
Hamiltonian. 

2. Description of the problem and the main results 

The Hamiltonian we shall consider in this paper is of the form 

HE =Ho+EXo 
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(2.1) 
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where n is the unit vector along an arbitrary fixed direction. The Hamiltonian (2.1) 
describes the dynamics of an electron of mass m in the potential V ( x )  and under the 
influence of the electric field E = ( & / e ) n .  About V we shall suppose that 

1 
a_"I lim V- T+all=" (2.4) 

i.e. V is T bounded, with relative bound zero. The condition (2.4) is a rather weak one; 
it is sufficient that V ( x )  be uniformly locally L2 (Reed and Simon 1975, theorem XI11 
96). In particular, if V ( x )  is periodic, i.e. for some basis {a i} i=1,2 ,3  E R , V ( x  + a )  = V ( x ) ,  
it is sufficient for V ( x )  to be square integrable over the unit cell. The condition (2.4) 
implies via the Kato-Rellich theorem (Kato 1966, theorem 4.3 ch V) that Ho is 
self-adjoint on 9 ( T ) .  It is known (Reed and Simon 1975, theorem X38) that H e  is 
essentially self-adjoint on C: (R3). 

Let uo be the spectrum of Ho. We shall suppose that there exist A 1,  A 2  E R, such that 

3 

(2.5) 

Let us stress that we shall not make any assumption about the nature of U:, so our 
results apply for periodic systems, as well as for disordered ones (as far as a forbidden 
gap exists (Nenciu and Nenciu 1981)). 

Let Po be the spectral projection of HO corresponding to U: and' 

T O ( & ;  t ) = \ ( ( l - P o )  exp(-iH't)Poll. (2.6) 

Obviously 1 - ; t )  is a lower bound for the probability of finding at time t the 
electron in a state corresponding to U:, if at t = 0 the electron is with probability one in a 
state corresponding to U:. The main problem we shall be concerned with is to obtain 
upper bounds on TO(& ; t ) .  The main result obtained in § 3 is that (see theorems 3.1 and 
3.2) 

TO(& ; t )  s E (C, + C,t) (2.7) 

for some constants O <  C1, C2<w. In the periodic case, in order to establish the 
existence of oscillating Bloch electrons in weak fields (Kittel 1963, Zak 1972, Nenciu 
and Nenciu 1980), one needs to show that r 0 ( & ;  t)<< 1 for t of order T = l /E la / ,  where 
la1 is the linear dimension of the unit cell. Clearly, the bound (2.7) is not sufficient. In 
fact, E C ~ T  is less than one only for sufficiently large forbidden gaps. On the other hand, 
physical arguments suggest that 

lim E + O  TO(& ; T )  = 0 (2.8) 

irrespective of the smallness of the forbidden gap. Bounds on r0(& ; T )  powerful enough 
to imply (2.8) are obtained in § 4. More exactly, it is proved that for a given integer n, 
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there exist O<E,, b,, C; <CO, k = 1 , 2 , .  . . , n +1 such that for O < E  < E ,  

Moreover, during the proof of (2.9) the following construction emerges. We shall 
construct a sequence of bounded operators B,, n = 0 ,  1,2 ,  . . . , with the following 
properties. 

(i) B, is well defined for E < E ,  and 

IIBn II b n E  (2.10) 

(ii) Let H a ( & )  be defined for E < E ,  by 

Then E I ; ; : ~  llBkll<d/2, so that H,(E) still has a gap in its spectrum. Let P, be the 
spectral projection of H E ( & )  corresponding to the part of its spectrum which coincides 
with CT: in the limit E + 0. Then 

I [ (  1 - P,) exp( - iH't)P,/I s b,E ,+It. (2.12) 

(iii) If H T  ( E )  is defined by 

HT ( E )  = H e  + EB, (2.13) 

or 

where 

then 

(2.16) 

(iv) Suppose that V ( x )  is periodic and T ( a i ) ,  i = 1 ,2 ,3 ,  are the unitary operators 
representing the translations with the basis vectors of the lattice. Then 

and consequently 

(2.18) 

(2.19) 

We have called H: ( E )  effective Wannier Hamiltonians of order n, since the approxi- 
mative Hamiltonians of the above sort were discussed for the first time by Wannier 
(1960) (see also Wannier 1962, Zak 1976). 
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3. The first-order theory 

We shall start with a few observations. 
(1) Consider the family of self-adjoint operators 

HoO) = U t  (t)HoUo(t), 

9d[Ho(t)l= Uo(t)9(Ho). (3.1) 

HI&) = (p - &nt)2 /2m + V ( x ) ,  (3.2) 

Ro(t; 2 )  = l / (Ho( t ) - z ) .  (3.3) 

Uo(t) = exp( - i&XOf) , 

Since Uo(t)9(Ho) = ~ ( H o )  we have 9 [ H o ( t ) ]  = 9(Ho) .  Moreover, as can be easily seen 

p = - iV.  

(2) For z E p[Ho(t)]  = p ( H 0 )  let 

Then, Ro(t;  t )  is norm differentiable as a function of t and 

d 1 p a n  1 
-Ro(t; z)=&Ut(t)--- Ho-z  m H O - z  Uo(t). dt  

To see this, note first that the operator 

1 p e n  1 --- 
H o - z  m Ho-z  

is bounded and 

The general case follows from (3.5), remarking that 

(3.4) 

(3) By definition, Ho(t) and Ho have the same spectrum. We shall denote by 

Po(t) = U t  (t)PoUo(t) (3.7) 

the spectral projection of Ho(t) corresponding to CT:. Po(t) is norm differentiable and 
the norm of the derivative does not depend on t. In fact 

dz) U&) (3.8) 

where C is a contour surrounding CT:. The formula (3.8) follows from (3.4) and the 
usual formula relating the spectral projectors and the resolvent of a self-adjoint 
operator. 

(4) The following construction, which is crucial for our theory, goes back to Kato 
(1950) (see also Kat0 1966, ch 11, 4.2, Messiah 1966, ch XVII). 

Lemma 3.1. Let P(t ) ,  t E R be a family of orthogonal projections, having continuous 
norm derivative with respect to t. 

(i) If K ( t )  is defined by 

K ( t )  = i ( l -2P(t))  dP(t)/dt  (3.9) 
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then K ( t )  is a family of bounded self-adjoint operators and 

[P( t ) ,  K(t)] = -i  dP(t)/dt. 

(ii) The equation 

i dA(t)/dt  = K(t)A(t) ,  

has a unique solution satisfying A-'(t) =A*([) and 

A(0) = 1, 

(3.10) 

(3.11) 

A(t)P(O) = P(t)A(t) .  (3.12) 

(5) Let Ko(t),  Ao(t) be given by the construction in lemma 3.1, applied to Po(t), and 

Bo= (1/&)Ko(O). (3.13) 

Consider now the self-adjoint operator 

Xi=Xo+Bo,   XI) = B(Xn). (3.14) 

By direct calculation (which is allowed by Stone's theorem) 

d 
dt 

i -[exp(isXot) exp( - i&Xlt)] f = Ko(t) exp(isXot) exp(- i&Xlt)f, f E 9 W O L  

(3.15) 

which implies 

A&) = exp(isXot) exp( - i&Xlf). (3.16) 

From (3.7), (3.12) and (3.16) it follows that 

[Po, exp( - i&Xlt)] = 0, for all t E R (3.17) 

which implies that i f f  E  XI), then Pof E  XI) and 

XlPOf - POXlf = 0.  (3.18) 

We are now ready to prove the main result of this section. 

(3.19) 

Proof. From (3.18) and the fact that H "  is essentially self-adjoint on 9(Ho) n 9(Xo) ,  it 
follows that 

(3.20) [exp[ - i(Ho + sXl)t], Po] = 0 

which together with the Schrodinger equation written in the form 

exp[i(Ho+ &Xl)t] exp( -iH"t) = 1 + E 

implies (3.19). 

exp[i(Ho + &X1)u]BO exp( - iH 'u )  du (3.21) I: 
One can easily obtain extensions of the above result. Let b ( x )  be a bounded function 

and B be the operator of multiplication with b ( x ) ,  Suppose that EIIBII < d/2. Let PB be 
the spectral projection of Ho--&B corresponding to the spectrum included in 
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{A 1 dist(A, g:) < EIIBII} and 

PB(t)  = exp[ie (Xo +B)t]PB exp[ - iE (X, + B)t]. 

Since X o  commutes with B 
PB(t )  = exp(ieBt) exp(i&Xot)PB exp( - iEXOt) exp( - iEBt) 

(3.22) 

(3.23) 

and, exactly as above, 

d 
- exp(ieXot)PB exp( - isXot) 
dt 

dz) 
= E exp(iaxot)( +- J" 1 p z  1 

Ti C H ~ - E B - - Z  m H o - e B - z  

x exp( - i E X O t )  (3.24) 

and it follows that PB(t )  is norm differentiable. From this point, all the theory 
developed above applies and the result is the following. 

Theorem 3.2. 

(3.25) 

Remarks 

3.1. Supposing that we know that on a dense set XoPo-PoXo is well defined and 
bounded, it is easy to see that its extension by continuity, denoted by [Xo, Po], equals 
(i/e)[dPo(t)/dt],,o. We can reformulate the result in theorem 3.1 as 

r O ( E  ; t )  eII[Po, xolllt. (3.26) 

Of course the same comment applies to theorem 3.2. Moreover, in this case the theory 
in the first part of this section becomes unnecessary since we can define X1 and Bo by 

(3.27) 

3.2. We shall outline the proof of the fact that the bound obtained recently by 
Bentosella (1979) is a particular case of (3.26). Consider the case when Po corresponds 
to a non-degenerate isolated band of a periodic system. Bentosella took as b ( x )  the 
periodic function which equals - n * x in the first cell. For E sufficiently small, PB 
corresponds to a non-degenerate isolated band of Ho- EB. Let wk(x) = w '(x -Rm) be 
the Wannier functions of this band (which are supposed to be sufficiently localised, such 
that all are in the domain of Xo). 

X,=P,X,P,+(l-Po)X,(l-P,), 

Bo = (1 - PO)X,P, + P,XO( 1 - Po) = (1 - 2PO)[PO, XO]. 

Let 

Let 

g(x) = c n RmCmwk(x) .  
m 

(3.29) 
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(3.30) 

where & is the same as in Bentosella's paper. 

4. The general theory 

We shall start by remarking that (3.2), (3.7), (3.9) and (3.11) imply the following. 

Lemma 4.1. Ro(t; t ) ,  Po(t) ,  Ko(t) and Ao(t) are indefinitely norm differentiable 
functions of t E R. 

Let us consider now Hl(r) given by 

Obviously, ( ~ [ H l ( t ) ]  = c1 is independent of t and for E < e1 = d/2(1Boll is a union of two 
disjoint sets 

U? c {A 1 dist(h, U : )  < EIIBoI~}. (4.2) 0 1  
U1 = U1 U u1, 

Following the construction of the previous section, we can define P l ( f )  as the 
spectral projection of Hl( t ) ,  corresponding to (T? and Kl(t) ,  Al(t) ,  B1 by formulae 
similar to (3.9), (3.11) and (3.13). 

Lemma 4.2, R l ( t ;  z ) ,  Pl(t ) ,  K l ( t )  and Al(t) are indefinitely norm differentiable 
functions of t E R. 

the indefinite norm differentiability of Rl ( t ;  z )  follows from lemma 4.1. 

One can continue this process indefinitely, At the nth step, the value of E for which 
the procedure can be carried out is 

(4.4) 
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The recurrence relations are 

X,+l =x, +B,, (4.5) 

H n + 1 =  H n  - EB,, (4.6) 

H, + 1 ( t  ) = A ( t  1 IH, ( t - K, ( t  ) 1-4 , ( t  1 = exp (ieX, + 1 t H, + 1 exp ( - i EXn + 1 t ) , (4.7) 

and the repetition of the theory in the previous section leads to the following theorem. 

Theorem 4.2. For E < E,, n = 0 ,  1,2 ,  . . . , there exists b, < 03 such that 

!!Bl 11 s E "b,. (4.10) 

The main body of the proof is contained in the following lemma. 

Lemma 4.3. Let C be a contour enclosing cr; and satisfying dist(C, crz) 2 d/2. Then 
there exist constants an,,, b,,, n = 0,1,  . . . , m = 1,2 ,  . . . , such that for E s E ,  

lld"R,(t; z)/dt"l! &,afl,,, (4.1 1) 

l!dmPfl(t)/dtm!l s ~ ~ ~ " ' b , , , .  (4.12) 

The proof is by induction over n. 
n = 0 :  

/ /dm Ro(t;z)/dt"J( = ll(d" Ro(t; z)/dt"),=o!l s (4.13) 

follows from 

d p a n  -Et 
- Ro(t; 2 )  = &Rg(t;  2 ) -  Ro(t; 2 ) .  dt m 

Now (4.12) for n = 0 follows from (4.13) and 

(4.14) 

(4.15) 

Supposing (4.11) and (4.12) are true for n - 1, (4.11) for n follows from the formula 

Rn(t; Z )  = A;-l(t)Rn-i(t)[l -K,-l(t)R,-l(t)I-lAn-l(t). (4.16) 

Finally (4.12) for n follows from the formula 

(4.17) 

A - i ( t P n - i ( O )  = P ~ - i ( t ) A ~ - i ( t )  (4.18) 

which is true by construction, implying that P,-1(0) is the spectral projection of 
A~-l(t)H,-l(t)A,-l(t)  corresponding to (+",I for all t E R. This finishes the proof of 
lemma 4.3. 

Formula (4.17) follows from the fact that 
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Now (4.10) is implied by (4.12) for m = 1 and the definition of B, and the proof of 
theorem 4.2 is finished. 

Finally, suppose that V ( x )  is periodic and let T ( a , )  be the translation operators. 

T(a, )Xo-XoT(a , )  = n ‘ a ,  (4.19) 

Either using 

or directly from (3.2), it follows that 

[Ho(t) ,  T(adl= 0, tER.  (4.20) 

Then by construction it follows that 

[Bk, T(aJl= 0 ,  k = 0 ,  1 , 2 , .  , . , (4.21) 
and then 

[ H m ,  T(aJI= 0 ,  m = 0 , 1 , 2 , .  . . . (4.22) 

[Xm,  T ( a , ) ]  = - n * a,. (4.23) 

Remarks 

4.1. Leaving the full discussion for a future publication, we shall comment a little on the 
controversial existence of the Stark-Wannier ladder. For simplicity, we shall consider 
the one-dimensional case. Moreover, we shall take Po corresponding to a single 
non-degenerate band. Then, P, will correspond to a non-degenerate band of H,. The 
nth-order effective Wannier Hamiltonian H, can be written as an orthogonal sum 

(4.24) 

Now, P,Hr (s)P, has a pure non-degenerate point spectrum (Avron et a1 1977, Avron 
1979) 

(4.25) 

where S is a certain constant and a is the lattice constant. Due to (4.10), $f’ is a 
pseudoeigenvalue of order n of the full Hamiltonian in the sense that (Reed and Simon 
1975, ch XI1 5)  

(4.26) 

indicating a spectral concentration of order n. Moreover, since the one-dimensional 
projector associated with $E’ commutes with H ;  ( E ) ,  it follows that 

(4.27) 

indicating a rather long lifetime of the pseudo-eigenstate $f’. Let us stress that while 
the spectral concentration in the sense of (4.26) is of the order E “ ,  the spacing between 
pseudo-eigenvalues is of the order of E .  In this sense, one can say that at low electric 
fields, a Stark-Wannier ladder of well separated resonances exists (see also Avron 
(1979) for related results). 

HY ( E )  = P,HY (&)P,  0 (1 -P,)HY ( E  )( 1 - P,). 

P,HY (E)P,$f) = (Eap + a)$:’, p = 0 ,  *l, *2 , .  . . , 

l I ~ ‘ $ f ’  - (&up  + ~ ) ~ f ’ l l ~  b ,~”+l ,  

I($f’,exp(-iHEt)$,”)1231-bb& 2 2 ( n + l )  t 2 , 

4.2. Our last remark is about the existence of an effective Hamiltonian having no 
interband transitions. If the constants b, appearing in (4.10) satisfy 

Ib, I C”, C<cO (4.28) 
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then H,, and X,, converge to well defined operators H,, X ,  for sufficiently small E ,  

Ha+ &Xm = H" and [Pa,  H " ]  = 0. Unfortunately, it seems that (4.28) is not true and 
the above scheme does not work, so if H,, converges in some sense to an operator H,, 
this is at best in some asymptotical sense (see also Wannier and Van Dyke (1968) for a 
discussion of this point). 

5. Generalisation and remarks 

The first remark is that in order to obtain bounds of the form (2.9), the homogeneity of 
the electric field is not really needed. The whole theory works if (2.3) is generalised to 

( X o f ) ( x )  = @(x)f(x), (5.1) 

the only condition being that @(x) be differentiable and its derivatives be bounded on 
R3. Of course, in this case the translation invariance of H,,, n = 1, 2 , .  . , , is lost. 
Moreover, bounds on the interband transition probabilities can be obtained also in the 
case when the electric field is not constant in time. 

Another generalisation is that in the case of a homogeneous electric field and 
perdiodic potential, the whole theory works if a forbidden gap exists in the following 
sense. Let cro(k) = { A b  ( k ) } z 0  be the (discrete) spectrum of Ho, at a fixed value of crystal 
momentum. If cr: = {A IA = AE(k), k E B, A: ( k )  is continuous}, then the condition (2.5) 
can be replaced by 

inf dist(A:(k), {cro(k)\A:(k)}) 2 d > 0 
k e B  

(5.2) 

where B is the first Brillouin zone. In other words, the condition is that a forbidden gap 
exists at each value of the crystal momentum. 

Our last remark concerns the numerical values of the constants appearing in (2.12), 
(3.25), etc. For the typical values d = 6 x 10-19J, a = 5 x 10-l' m, Bentosella claims 
(Bentosella 1979) that for his choice of B 

rBen(E ; T )  =z 4 x (5.3) 

without any assumption on V, as far as E S lo7 V m-', However, we were not able to 
follow his arguments leading to the above estimates (and we suspect one of them to be 
incorrect). 

Our (rough) estimations lead, under the assumption that V ( x )  is bounded and 

ess sup V ( x )  - ess inf V ( x )  5 6 x J 
XCR3 X C R 3  

(5.4) 

give the weaker results 

TO(& ; T )  c 5 x 10 (5.5) 
and 

T )  G 8 x ~ o - ~ E  for E 5 10' v m-l. (5.6) 

A detailed study of the numerical values of the constants appearing in the theory will 
be published. 
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